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Abstract

We briefly discuss variants of (extended) spiking
neural P systems that combine features from the area
of membrane computing and spiking neurons.

1 Introduction

P systems (membrane systems) were introduced by
Gheorghe Păun in 1998 (see [16]) as a formal model de-
scribing the hierarchical structure of membranes in liv-
ing organisms and the biological processes in and be-
tween cells (an introduction to this field can be found
in the monograph [17], for the actual state of research
we refer to the well maintained bibliography at [22]).
In the area of membrane computing there are two

main classes of systems: P systems with a hierarchical
(tree-like) structure as introduced in the seeding paper
of this research area ([16]) and tissue P systems where
the cells are arranged in an arbitrary graph structure
(see [15]).
Based on the observation that neurons send electri-

cal impulses (also called spikes) along axons to other
neurons, new models in the area of neural computation
were introduced, e.g., see [8], [13], [14].
Combining the ideas of (tissue) P systems and spik-

ing neurons, spiking neural P systems (SNP systems
for short) were introduced in [10]. For the motiva-
tion and the biological background of spiking neural
P systems we refer the reader to [10], [18], here we
just briefly recall that in SNP systems, the contents
of a cell (neuron) consists of a number of so-called
spikes; the rules assigned to a cell allow for sending
information to other neurons in the form of electrical
impulses (also called spikes) which are summed up at
the target cell; the application of the rules depends
on the contents of the neuron (which, in the general
case, is described by regular sets). The system is syn-
chronized but it works sequentially at the level of the
neurons: in every step at most one rule is used in each
of the neurons. As inspired by biological findings, the
cell sending out spikes may be “closed” for a specific

time period corresponding to the refraction period of
a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”)
for spiking again.
The length of the axon may cause a time delay be-

fore a spike arrives at the target. Moreover, the spikes
coming along different axons may cause effects of dif-
ferent magnitude. These features have been included
in the extended model of spiking neural P systems
considered below.
This paper is intended to give a brief and informal

overview of some of the models already proposed in
the literature and is organized as follows.
In the next section, we give the original definition of

ESNP systems as introduced in [1], before discussing
some extended versions that incorporate other biologi-
cally inspired features. In section 4, the computational
power of the proposed systems is summarized, while
some further remarks in section 5 conclude this paper.

2 Definitions

N denotes the set of non-negative integers. The in-
terval of non-negative integers between k and m is
denoted by [k..m].
In the following, we give the original definition of

extended spiking neural P systems as they have been
introduced in [1]:
An extended spiking neural P system (ESNP system

for short) is a construct

Π = (m,S,R)

where

• m is the number of cells (or neurons); the neurons
are uniquely identified by a number between 1 and
m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

• S describes the initial configuration by assigning
an initial value (of spikes) to each neuron; for the
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sake of simplicity, we assume that at the begin-
ning of a computation we have no pending pack-
ages along the axons between the neurons;

• R is a finite set of rules of the form(
i, E/ak → P ; d

)
such that i ∈ [1..m] (specifying

that this rule is assigned to cell i), E ⊆ REG (N)
is the checking set (the current number of spikes
in the neuron has to be from E if this rule shall
be executed), k ∈ N is the “number of spikes”
(the energy) consumed by this rule, d is the de-
lay (the “refraction time” when neuron i performs
this rule), and P is a (possibly empty) set of pro-
ductions of the form (l, w, t) where l ∈ [1..m] (thus
specifying the target cell), w ∈ N is the weight of
the energy sent along the axon from neuron i to
neuron l, and t is the time needed before the in-
formation sent from neuron i arrives at neuron l
(i.e., the delay along the axon).

A configuration of the ESNP system is described as
follows:

• for each neuron, the actual number of spikes in
the neuron is specified;

• in each neuron i, there may be an “activated rule”(
i, E/ak → P ; d′

)
waiting to be executed where d′

is the remaining time until the neuron spikes;

• in each axon to a neuron l, we may find pending
packages of the form (l, w, t′) where t′ is the re-
maining time until w spikes have to be added to
neuron l provided it is not closed for input at the
time this package arrives.

A transition from one configuration to another one
now works as follows:

• for each neuron i, we first check whether we find
an “activated rule”

(
i, E/ak → P ; d′

)
waiting to

be executed; if d′ = 0, then neuron i “spikes”,
i.e., for every production (l, w, t) occurring in
the sequence r we put the corresponding package
(l, w, t) on the axon from neuron i to neuron l,
and after that, we eliminate this “activated rule”(
i, E/ak → P ; 0

)
;

• for each neuron l, we now consider all packages
(l, w, t′) on axons leading to neuron l; provided
the neuron is not closed, i.e., if it does not carry
an activated rule

(
i, E/ak → P ; d′

)
with d′ > 0,

we then sum up all weights w in such packages
where t′ = 0 and add this sum to the correspond-
ing number of spikes in neuron l; in any case,

the packages with t′ = 0 are eliminated from the
axons, whereas for all packages with t′ > 0, we
decrement t′ by one;

• for each neuron i, we now again check whether we
find an “activated rule”

(
i, E/ak → P ; d′

)
(with

d′ > 0) or not; if we have not found an “activated
rule”, we now may apply any rule (i, E, k, d; r)
from R for which the current number of spikes
in the neuron is in E and then put a copy of
this rule as “activated rule” for this neuron into
the description of the current configuration; on
the other hand, if there still has been an “acti-
vated rule”

(
i, E/ak → P ; d′

)
in the neuron with

d′ > 0, then we replace d′ by d′ − 1 and keep(
i, E/ak → P ; d′ − 1

)
as the “activated rule” in

neuron i in the description of the configuration
for the next step of the computation.

After having executed all the substeps described
above in the correct sequence, we obtain the descrip-
tion of the new configuration. A computation is a se-
quence of configurations starting with the initial con-
figuration given by S. A computation is called success-
ful if it halts, i.e., if no pending package can be found
along any axon, no neuron contains an activated rule,
and for no neuron, a rule can be activated.

In the original model introduced in [10], in the pro-
ductions (l, w, t) of a rule

(
i, E/ak → {(l, w, t)} ; d

)
,

only w = 1 (for spiking rules) or w = 0 (for forgetting
rules) as well as t = 0 was allowed (and for forgetting
rules, the checking set E had to be finite and disjoint
from all other sets E in rules assigned to neuron i).
Moreover, reflexive axons, i.e., leading from neuron i
to neuron i, were not allowed, hence, for (l, w, t) being
a production in a rule

(
i, E/ak → P ; d

)
for neuron i,

l �= i was required. Yet the most important extension
is that different rules for neuron i may affect different
axons leaving from it whereas in the original model
the structure of the axons (called synapses there) was
fixed.

Depending on the purpose the ESNP system shall
be used, some more features have to be specified: e.g.,
for generating k-dimensional vectors of non-negative
integers, k neurons have to be designated as output
neurons. There are several possibilities to define how
the output values are computed; according to [10], the
distance between the first two spikes in an output neu-
ron defines its value; another possibility is to take the
number of spikes at the end of a successful computa-
tion in the neuron as the output value (e.g., see [1]).
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3 Some Natural Extensions

A quite natural feature found in biology and also used
in the area of neural computation is that of inhibitory
neurons or connections between neurons. The model
of extended spiking neural P systems was extended
again in [7] by considering inhibitory axons that allow
for “closing” a neuron for one step by sending a spike
along such an inhibitory axon to this neuron from an-
other one. These systems were used to model logical
gates in [7], but they also promise to be interesting for
specifying other models of computation, e.g., the rela-
tion between extended spiking neural P systems with
inhibitory axons and Petri nets could be interesting to
explore.

Another model of membrane systems incorporating
some specific features of complex systems consisting
of two interacting networks of neurons and astrocytes
has been investigated in [3]:
Astrocytes, a sub-type of macroglia have been un-

derstood as star-shaped glial cells spanning around
neurons in the central nervous system (e.g., see [20]).
Newer findings, however, have shown that a complex
feedback loop of neuronal modulation exerted by as-
trocytes can be postulated. The influence of astrocytes
in the functioning of the human brain has also been in-
vestigated in [21], where the influence of the capillary
system in connection with the networks of neurons and
astrocytes was modelled.
Inspired by this biological background (but without

taking into account the capillary system), the concept
of astrocytes influencing the signals along the axons
has been incorporated in ESNP systems in [3] and [2].
For the astrocytes themselves, their membrane poten-
tial was assumed to be changed according to external
inputs which may either come from neural cells ([3])
or from the firing intensity and frequency along the
axon ([2]).

These models could well be used for the represen-
tation of artificial neural networks, especially for self-
organizing feature maps; yet in contrast to analytic
models of such variants of neural networks, the pro-
posed models work in a discrete manner, but on the
other hand, are based on a graph-like structure and not
on a (usually two-dimensional) grid. (An example of
such a two-dimensional artificial neural network based
on biological observations of the complex networks of
neurons and astrocytes in the human neocortex can be
found in [4].)
For specific applications, especially in the area of

artificial neural networks and self-organizing feature
maps, an extended version where the dynamic evolu-

tion of new connections between neurons is allowed,
could be useful; the influence of the already existing
astrocytes on these new axons plays an important role.
Another variant to be considered in the future are net-
works where part of the network may be destroyed
which also has an interesting biological background.
In this case, the ability of such a complex network to
reorganize itself is the most challenging aspect of this
variant.

4 Computational Power

(E)SNP systems are very powerful from a computa-
tional point of view, when the number of spikes present
in the system is not bounded.

In this case, many variants of (E)SNP systems were
shown to be equal in power with Turing machines:

Already the original model of spiking neural P sys-
tems was shown to be computationally complete, i.e.,
able to generate any recursively enumerable set of non-
negative integers (see [10]). From the results estab-
lished in [1], where extended spiking neural P systems
(without astrocytes) were shown to be able to com-
pute any partial recursive function on N, computa-
tional completeness can immediately be obtained for
ESNP systems with inhibitory axons or astrocytes,
too, because just omitting inhibitory axons or astro-
cytes gives a sufficiently powerful submodel of spiking
neural P system as defined in [10].

These results can also be obtained with even more
restricted forms of spiking neural P systems, e.g., no
time delay (refraction period) is needed, as it was
shown in [9].

Although even when using the extended model of
spiking neural P systems, the restriction of decaying
spikes (i.e., the spikes have a limited lifetime) and/or
total spiking (i.e., the whole contents of a neuron is
erased when it spikes) do not allow for the generation
or the acceptance of more than regular sets of natural
numbers as it is shown in [6].

When bounding the number of spikes in the neu-
rons, the power of (E)SNP systems decreases:

A characterization of semilinear sets was obtained
by spiking neural P systems ([10]), while it was shown
in [1] that only regular functions can be computed and
only regular sets can be generated/ accepted with fi-
nite extended spiking neural P systems.

We refer to the respective cited papers for more
details and proofs as well as to [22] for further results.
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5 Further Remarks

We have briefly discussed some variants of (extended)
spiking neural P systems and their computational
power. Many other variants and aspects have already
been explored in this young research area, that are not
covered here, e.g., the asynchronous use of rules in [5],
a sorting algorithm for vectors of natural numbers was
proposed in [11], while the solution of some numerical
NP-complete problems is addressed in [12], to mention
only a few. For the actual state of research and further
references, we refer the interested reader to [22].
However, many problems are still open (some of

them are listed in [19]) and remain interesting topics
for future research.
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[17] Păun Gh (2002) Computing with Membranes: An
Introduction. Springer, Berlin
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